Facebook taps deep learning for customized feeds

Facebook taps deep learning for customized feeds

Serving more than a billion people a day, Facebook has its work cut out for it when providing customized news feeds. That is where the social network giant takes advantage of deep learning to serve up the most relevant news to its vast user base.

Facebook is challenged with finding the best personalized content, Andrew Tulloch, Facebook software engineer, said at the company’s recent @scale conference in Silicon Valley. “Over the past year, more and more, we’ve been applying deep learning techniques to a bunch of these underlying machine learning models that power what stories you see.”

Applying such concepts as neural networks, deep learning is used in production in event prediction, machine translation models, natural language understanding, and computer vision services. Event prediction, in particular, is one of the largest machine learning problems at Facebook, which must serve the top couple of stories out of thousands of possibilities for users, all in a few hundred milliseconds. “Predicting relevance in and of itself is a very challenging problem in general and relies on understanding multiple content modalities like text, pixels from images and video, and the social context,” Tulloch said.

The company must also deal with content posted in more than 100 languages daily, thus complicating classic machine learning, Tulloch said. Text must be understood at a deep level for proper ranking and display. In its deep learning efforts, Facebook has gone with its DeepText text understanding engine, which reads and understands users’ posts and has been open-sourced in part.

In addition, Facebook must account for visual content. “The real challenge is to understand the content of photos and videos from just the pixels because that’s all a computer sees,” Tulloch noted. High-level understanding of content helps Facebook surface visual memories. But deep learning has pushed the state of the art forward in computer vision tasks, Tulloch said, including with classifying videos.

Also deployed is convolution, which takes images and tries to apply filters to identify patterns, to help with high-level semantic understanding, said Yangqing Jia. Facebook has worked to optimize convolution. Still, deep learning is a very generic technique in general, Tulloch said. A lot of approaches to it transfer cleanly across domains.

IDG Insider

PREVIOUS ARTICLE

«EVGA GTX 1060 3GB review: A compelling $200 graphics card with a questionable future

NEXT ARTICLE

Myth versus fact: Open source projects and federal agencies»
author_image
IDG Connect

IDG Connect tackles the tech stories that matter to you

Add Your Comment

Recommended for You

kathryn-cave

Blockchain For Dummies: What you really need to know

Kathryn Cave looks at the big trends in global tech

martin-veitch-thumbnail

What we know and don’t know about digital transformation

Martin Veitch's inside track on today’s tech trends

silhouette

Four hot IT growth areas to guarantee a big salary bump

IDG Connect tackles the tech stories that matter to you

Most Recent Comments

Our Case Studies

IDG Connect delivers full creative solutions to meet all your demand generatlon needs. These cover the full scope of options, from customized content and lead delivery through to fully integrated campaigns.

images

Our Marketing Research

Our in-house analyst and editorial team create a range of insights for the global marketing community. These look at IT buying preferences, the latest soclal media trends and other zeitgeist topics.

images

Poll

Should companies have Bitcoins on hand in preparation for a Ransomware attack?